Theoretical Investigation of the Optical Properties of Coupled Nano-Waveguides

Johannes Wilde

24.03.2017

Introduction

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
●000	0000000	000	000000	0

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
●000	0000000	000	000000	0

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
●000	0000000	000	000000	0

- energy-conservation: $\omega_{\text{pump}} = \omega_{\text{signal}} + \omega_{\text{idler}}$
- phase-matching: $k_{pump} = k_{signal} + k_{idler}$

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
●000	0000000	000	000000	0

pump
$$\wedge \wedge \wedge \stackrel{\chi_2}{\times} \stackrel{\wedge \to \text{signal}}{\wedge \to \text{idler}}$$

- energy-conservation: $\omega_{\text{pump}} = \omega_{\text{signal}} + \omega_{\text{idler}}$
- phase-matching: $k_{pump} = k_{signal} + k_{idler}$
- dispersion engineering for $\omega(k)$

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Chosen Structure

• periodic structures great for dispersion engineering

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Chosen Structure

- periodic structures great for dispersion engineering
- approaches exist:
 - 2D photonic crystal [PC]

nice optic properties

hard to fabricate

[Saravi et al., Phys. Rev. A 92(6):063821, 2015]

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Chosen Structure

- periodic structures great for dispersion engineering
- approaches exist:
 - 2D photonic crystal [PC]

nice optic properties

hard to fabricate

[Saravi et al., Phys. Rev. A 92(6):063821, 2015]

- 1D periodic waveguide

few parameters for

dispersion engineering

[Quintero-Bermudez et al., in The Eur. Conf. on Lasers and Electro-Optics, 2015]

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

• chosen:

[Gutman et al., Opt. Express, 2012]

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

• chosen:

coupling offers great control over dispersion

[Gutman et al., Opt. Express, 2012]

- aim:
 - design complicated dispersion
 - investigate effects on SPDC

Overview

Introduction

Linear Optic Design

Analytic Description of SPDC

Non-Linear Optical Properties

Conclusion

Linear Optic Design

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	●0000000	000	000000	0

Simple Waveguide

• lithium niobate

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	●0000000	000	000000	0

Simple Waveguide

- lithium niobate
- schematic band diagram for a waveguide and one transversal mode $\operatorname{profile}_{(i)}$.

• guided WG modes and continuum of free-space modes

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

• schematic band diagram for a structured waveguide

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

• schematic band diagram for a structured waveguide

• band gaps at edge of 1. BZ

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

• schematic band diagram for a structured waveguide

• band gaps at edge of 1. BZ

• forward $[v_{\rm gr} = \frac{d\omega}{dk} > 0]$ and backward $[v_{\rm gr} < 0]$ prop. modes

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

• schematic band diagram for a structured waveguide

• band gaps at edge of $1.\,\mathrm{BZ}$

• forward $[v_{\rm gr} = \frac{d\omega}{dk} > 0]$ and backward $[v_{\rm gr} < 0]$ prop. modes

• group index:
$$n_{\rm gr} = \frac{c_0}{v_{\rm gr}}$$

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Full Structure

z[a]

 $-4 -2 \ 0 \ 2$

y[a]

2

0

-2

0.5

 y_{even}

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Full Structure

• bands 1,2 and 3 dominant E_y , bands 4,5 and 6 dominant E_z

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Full Structure

- bands 1,2 and 3 dominant E_y , bands 4,5 and 6 dominant E_z
- focus on upper crossing [pump]

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

• effect of coupling

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

• effect of coupling

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

• effect of coupling

• mode profiles strongly affected at interaction region

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

• effect of coupling

- mode profiles strongly affected at interaction region
- no coupling of modes of opposing symmetry

distance of neighboring WGs 1.4 a

distance of neighboring WGs 1.3 a

distance of neighboring WGs 1.2 a

distance of neighboring WGs 1.1 a

distance of neighboring WGs 1.0 a

distance of neighboring WGs 0.9a

distance of neighboring WGs 0.8 a

distance of neighboring WGs 0.7 a

distance of neighboring WGs 0.6 a

distance of neighboring WGs 0.5 a

distance of neighboring WGs 0.4 a

distance of neighboring WGs 0.3 a

distance of neighboring WGs 0.2a

distance of neighboring WGs 0.4 a

- bands shifted \rightarrow anti-crossing shifted
- stronger coupling \rightarrow bigger frequency gap between bands

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	00000000	000	000000	0

shifted of one row of holes in \vec{e}_x by 0.00 a

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	00000000	000	000000	0

shifted of one row of holes in \vec{e}_x by 0.05 a

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	00000000	000	000000	0

shifted of one row of holes in \vec{e}_x by 0.10 a

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	00000000	000	000000	0

shifted of one row of holes in \vec{e}_x by 0.15 a

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	00000000	000	000000	0

shifted of one row of holes in \vec{e}_x by 0.20 a

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	00000000	000	000000	0

shifted of one row of holes in \vec{e}_x by 0.25 a

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	00000000	000	000000	0

shifted of one row of holes in \vec{e}_x by 0.30 a

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	00000000	000	000000	0

shifted of one row of holes in \vec{e}_x by 0.35 a

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	00000000	000	000000	0

shifted of one row of holes in \vec{e}_x by 0.40 a

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	00000000	000	000000	0

shifted of one row of holes in \vec{e}_x by 0.45 a

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	00000000	000	000000	0

shifted of one row of holes in \vec{e}_x by 0.50 a

• previously crossing bands with the same dominant field component couple

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	00000000	000	000000	0

shifted of one row of holes in \vec{e}_x by 0.25 a

- previously crossing bands with the same dominant field component couple
- selected shift of 0.25 a

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	00000000	000	000000	0

• mode profiles vary strongly over one band at anti-crossings

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Pump Modes

• pump for SPDC [
$$\omega_{pump} = \omega_{signal} + \omega_{idler}$$
 ,
 $k_{pump} = k_{signal} + k_{idler}$]

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Pump Modes

• pump for SPDC [
$$\omega_{\text{pump}} = \omega_{\text{signal}} + \omega_{\text{idler}}$$
,
 $k_{\text{pump}} = k_{\text{signal}} + k_{\text{idler}}$]

• one suitable pump mode

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Pump Modes

• pump for SPDC [
$$\omega_{pump} = \omega_{signal} + \omega_{idler}$$
 ,
 $k_{pump} = k_{signal} + k_{idler}$]

• one suitable pump mode

• pump mode does not see periodicity

Analytic Description of SPDC

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	•00	000000	0

• 1D periodic structure with period a along \vec{e}_x

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	● O O	000000	0

- 1D periodic structure with period a along \vec{e}_x
- Fourier components of the electric field can be written as:

 $\vec{E}(\vec{r},\omega) = \vec{e}(\vec{r},k) e^{ikx}$

- Bloch mode \vec{E}
- Bloch mode profile \vec{e} , periodic: $\vec{e}(\vec{r}) = \vec{e}(\vec{r} + a \vec{e}_x)$

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	●00	000000	0

- 1D periodic structure with period a along \vec{e}_x
- Fourier components of the electric field can be written as:

$$\vec{E}(\vec{r},\omega) = \vec{e}(\vec{r},k) e^{ikx} = \sum_{n} \vec{\epsilon}_{n}(y,z,k) e^{i\frac{n^{2\pi}}{a}x} e^{ikx}$$

- Bloch mode \vec{E}
- Bloch mode profile \vec{e} , periodic: $\vec{e}(\vec{r}) = \vec{e}(\vec{r} + a \vec{e}_x)$
- Bloch harmonics $\vec{\epsilon}$

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	•00	000000	0

- 1D periodic structure with period a along \vec{e}_x
- Fourier components of the electric field can be written as:

$$\vec{E}(\vec{r},\omega) = \vec{e}(\vec{r},k) e^{ikx} = \sum_{n} \vec{\epsilon}_{n}(y,z,k) e^{i\frac{n^{2\pi}}{a}x} e^{ikx}$$

- Bloch mode \vec{E}
- Bloch mode profile \vec{e} , periodic: $\vec{e}(\vec{r}) = \vec{e}(\vec{r} + a \vec{e}_x)$
- Bloch harmonics $\vec{\epsilon}$
- generalized phase-matching condition $\Delta k \coloneqq k^{(p)} - k^{(s)} - k^{(i)} + \left[\mathfrak{n}^{(p)} - \mathfrak{n}^{(s)} - \mathfrak{n}^{(i)}\right] \frac{2\pi}{a}$

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

• weak non-linear optical process, undepleted classical pump

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

- weak non-linear optical process, undepleted classical pump
- initial state $|\Psi_0\rangle$ only vacuum and pump
- lossy modes incorporated in description, finite length of structure L =: Na

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

- weak non-linear optical process, undepleted classical pump
- initial state $|\Psi_0\rangle$ only vacuum and pump
- • lossy modes incorporated in description, finite length of structure $L \eqqcolon Na$
- result:

$$\Psi_{\text{end}} \rangle = |\Psi_0\rangle + \int d\omega_s d\omega_i \text{ JSA}(\omega_p, \omega_s, \omega_i) |1^{(s)}, 1^{(i)}\rangle$$

$$p \text{ - pump, } s \text{ - signal, } i \text{ - idler } \text{ and } \omega_p = \omega_s + \omega_s$$

• joint spectral amplitude [JSA]

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

- weak non-linear optical process, undepleted classical pump
- initial state $|\Psi_0\rangle$ only vacuum and pump
- • lossy modes incorporated in description, finite length of structure $L \eqqcolon Na$
- result:

$$\Psi_{\text{end}} \rangle = |\Psi_0\rangle + \int d\omega_s \, d\omega_i \, \text{JSA}(\omega_p, \omega_s, \omega_i) \, |1^{(s)}, 1^{(i)}\rangle$$
$$p \text{ - pump, } s \text{ - signal, } i \text{ - idler } \text{ and } \omega_p = \omega_s + \omega_i$$

- joint spectral amplitude [JSA]
- physical meaning: $|JSA|^2$ is creation probability density

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

JSA = i
$$A^{(p)}(\omega_s + \omega_i) \frac{1}{c_0} \sqrt{\omega_s \omega_i} \sqrt{|n_{\rm gr}^{(s)}| |n_{\rm gr}^{(i)}|}$$

$$\iiint_{\rm UC} d^3 r \varepsilon_0 \chi_2^{\alpha\beta\gamma} e_{\alpha}^{(p)} e_{\beta}^{(s)*} e_{\gamma}^{(i)*} e^{-i\Delta \mathfrak{n} \frac{2\pi}{a} x} \cdot e^{i\Delta k \frac{L}{2}} N \operatorname{sinc} \left(\Delta k \frac{L}{2}\right)$$

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

$$JSA = i A^{(p)} (\omega_s + \omega_i) \frac{1}{c_0} \sqrt{\omega_s \omega_i} \sqrt{\left| n_{gr}^{(s)} \right| \left| n_{gr}^{(i)} \right|}$$
$$\cdot \iiint_{UC} d^3 r \varepsilon_0 \chi_2^{\alpha\beta\gamma} e_\alpha^{(p)} e_\beta^{(s)*} e_\gamma^{(i)*} e^{-i \Delta \mathfrak{n} \frac{2\pi}{a} x}$$
$$\cdot e^{i \Delta k \frac{L}{2}} N \operatorname{sinc} \left(\Delta k \frac{L}{2} \right)$$

• pump amplitude:

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

$$JSA = i A^{(p)} (\omega_s + \omega_i) \frac{1}{c_0} \sqrt{\omega_s \omega_i} \sqrt{\left| n_{gr}^{(s)} \right| \left| n_{gr}^{(i)} \right|}$$
$$\cdot \iiint_{UC} d^3 r \varepsilon_0 \chi_2^{\alpha\beta\gamma} e^{(p)}_{\alpha} e^{(s) *}_{\beta} e^{(i) *}_{\gamma} e^{-i \Delta \mathfrak{n} \frac{2\pi}{a} x}$$
$$\cdot e^{i \Delta k \frac{L}{2}} N \operatorname{sinc} \left(\Delta k \frac{L}{2} \right)$$

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

$$JSA = i A^{(p)}(\omega_s + \omega_i) \frac{1}{c_0} \sqrt{\omega_s \omega_i} \sqrt{|n_{gr}(s)| |n_{gr}(i)|}$$
$$\cdot \iiint_{UC} d^3 r \varepsilon_0 \chi_2^{\alpha\beta\gamma} e_{\alpha}^{(p)} e_{\beta}^{(s)*} e_{\gamma}^{(i)*} e^{-i \Delta \mathfrak{n} \frac{2\pi}{a} x}$$
$$\cdot e^{i \Delta k \frac{L}{2}} N \operatorname{sinc} \left(\Delta k \frac{L}{2}\right)$$

• $n_{\rm gr}$:

strongly mode- and frequency-dependent

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

$$JSA = i A^{(p)} (\omega_s + \omega_i) \frac{1}{c_0} \sqrt{\omega_s \omega_i} \sqrt{\left| n_{gr}^{(s)} \right| \left| n_{gr}^{(i)} \right|}$$
$$\iiint_{UC} d^3 r \varepsilon_0 \chi_2^{\alpha\beta\gamma} e^{(p)}_{\alpha} e^{(s) *}_{\beta} e^{(i) *}_{\gamma} e^{-i \Delta \mathfrak{n} \frac{2\pi}{a} x}$$
$$\cdot e^{i \Delta k \frac{L}{2}} N \operatorname{sinc} \left(\Delta k \frac{L}{2} \right)$$

• MO: strongly mode- and frequency-dependent

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

JSA = i
$$A^{(p)}(\omega_s + \omega_i) \frac{1}{c_0} \sqrt{\omega_s \omega_i} \sqrt{|n_{\rm gr}(s)| |n_{\rm gr}(i)|}$$

$$\iiint_{\rm UC} \mathrm{d}^3 r \,\varepsilon_0 \,\chi_2^{\alpha\beta\gamma} \,e^{(p)}_{\alpha} \,e^{(s)*}_{\beta} \,e^{(i)*}_{\gamma} \,\mathrm{e}^{-\mathrm{i}\,\Delta\mathfrak{n}\,\frac{2\pi}{a}\,x}$$
$$\cdot \mathrm{e}^{\mathrm{i}\,\Delta k \,\frac{L}{2}} \,N\,\mathrm{sinc}\left(\Delta k \,\frac{L}{2}\right)$$

• allows to calculate JSA from linear optical modes

Non-Linear Optical Properties
Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	●000000	0

- experimental observable: propagation direction
- distinguish $\rightarrow \rightarrow$, $\rightarrow \leftarrow$ and $\leftarrow \leftarrow$ photon-pairs

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	●000000	0

- experimental observable: propagation direction
- distinguish $\rightarrow \rightarrow$, $\rightarrow \leftarrow$ and $\leftarrow \leftarrow$ photon-pairs

• down-folded pump [band 8]

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	●000000	0

- experimental observable: propagation direction
- distinguish $\rightarrow \rightarrow$, $\rightarrow \leftarrow$ and $\leftarrow \leftarrow$ photon-pairs

- down-folded pump [band 8]
- for full JSA all possible combinations

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Single Photon-Pair JSA Parts

• Exemplary depiction of parts of the JSA for bandlets 2 and 3

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Single Photon-Pair JSA

• Full JSA for bandlets 2 and 3

$$[A^{(p)} \equiv 1]$$

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Phase Matching Positions

• Positions of optimal phase-matching for the designed structure:

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	0000000	0

Complete Calculated JSA

• propagation-direction and frequency resolved results: $\rightarrow \rightarrow$

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	0000000	0

Complete Calculated JSA

• propagation-direction and frequency resolved results: $\rightarrow \leftarrow$

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	0000000	0

Complete Calculated JSA

• propagation-direction and frequency resolved results: $\leftarrow \leftarrow$

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	0000000	0

Length Dependence

• integrated probabilities for photon-pairs resolved by propagation-direction: $A^{(p)} \equiv 1$

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	0000000	0

Length Dependence

• integrated probabilities for photon-pairs resolved by propagation-direction: $A^{(p)} \equiv 1$

• phase-matching becomes more important for longer structures

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

 $\omega_{\text{idler}} \left[\frac{2\pi c_0}{a} \right]$

0.3

0.295

0.295

 $\omega_{\text{signal}}\left[\frac{2\pi c_0}{a}\right]$

0.305

0.31

0.3

 $A^{(p)} \equiv 1$

L = 100 a

20

10

0

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

0.31

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

 $\omega_{\text{signal}}\left[\frac{2\pi c_0}{a}\right]$

L = 100 a

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	0

Conclusion

Introduction	Linear Optic Design	Anal. Descr. of SPDC	Non-Linear Optical Properties	Conclusion
0000	0000000	000	000000	•

Conclusion

- designed structure with complicated dispersion [on substrate]
- implemented JSA numerically [with losses]
- a huge variety of effects shown

Thank you for your attention!

Mirror-Symmetry

Mirror-Symmetry	Material Properties	Waveguide Coupling	Additional JSA Info	Literature
•	0	0000	000	0

Mirror Symmetries

For the modes of a structure to be able to be called even or odd in x^{α} , the structure has to have a mirror-symmetry in the same direction.

label of	possible symmetries of the solutions					
the mode	$E_x(\vec{r},\omega)$	$E_y(\vec{r},\omega)$	$E_z(\vec{r},\omega)$	$H_x(ec{r},\omega)$	$H_y(ec{r},\omega)$	$H_z(\vec{r},\omega)$
x_{even}	even(x)	odd(x)	odd(x)	odd(x)	even(x)	even(x)
$x_{\rm odd}$	odd(w)	even(x)	even(x)	even(x)	odd(w)	$\operatorname{out}(x)$
$y_{ m odd}$	even(y)	$\operatorname{odd}(y)$	$\operatorname{even}(y)$	$\operatorname{odd}(y)$	even(y)	$\operatorname{odd}(y)$
$z_{ m even}$	$\mathrm{odd}(z)$	$\mathrm{odd}(z)$	$\operatorname{even}(z)$	$\operatorname{even}(z)$	$\operatorname{even}(z)$	$\mathrm{odd}(z)$
$z_{ m odd}$	$\operatorname{even}(z)$	$\operatorname{even}(z)$	$\operatorname{odd}(z)$	$\operatorname{odd}(z)$	$\operatorname{odd}(z)$	$\operatorname{even}(z)$

Combinations of symmetries are possible.

Material Properties
Mirror-Symmetry o	Material Properties \bullet	Waveguide Coupling 0000	Additional JSA In 000	fo Literature O
Material F	roperties			
	sig	nal/idler	pu	mp
λ_0	1	$500\mathrm{nm}$	750	nm
$n_{ m air}$			1	
n_{SiO_2} [3]		1.445	1.4	154
$\hat{n}_{\mathrm{LiNbO}_3}$ [6]	$\left[\begin{array}{c} 2.213\\ 0\\ 0\end{array}\right]$	$\left. \begin{array}{cc} 0 & 0 \\ 2.213 & 0 \\ 0 & 2.139 \end{array} \right)$	$ \left(\begin{array}{ccc} 2.262 & 0 \\ 0 & 2.2 \\ 0 & 0 \end{array}\right) $	$\begin{pmatrix} 0 & 0 \\ 262 & 0 \\ 0 & 2.182 \end{pmatrix}$
$\hat{d}_{\mathrm{LiNbO_3}}$ [1]		$\begin{pmatrix} 0 & 0 & 0 \\ -3 & 3 & 0 \\ -5 & -5 & 3 \end{pmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left. \frac{1}{V} \right) \frac{pm}{V}$

Waveguide Coupling

Mirror-Symmetry	Material Properties	Waveguide Coupling	Additional JSA Info	Literature
0	0	●000	000	0

• single waveguide:

Mirror-Symmetry	Material Properties	Waveguide Coupling	Additional JSA Info	Literature
0	o	0●00	000	0

• two waveguides:

2

0

-2

z[a]

Mirror-Symmetry	Material Properties	Waveguide Coupling	Additional JSA Info	Literature
0	0	0000	000	0

• shift of the lowest two bands for two coupled WGs over the distance between those two WGs:

0	0	0000	000	0
Mirror-Symmetry	Material Properties	Waveguide Coupling	Additional JSA Info	Literature

2

0

-2

 $\begin{bmatrix} z \\ z \\ z \end{bmatrix} = \begin{bmatrix} 0.5 \\ -0.5 \end{bmatrix} = \begin{bmatrix} -4 & -2 & 0 \end{bmatrix}$

z[a]

y[a]

2 4

Additional JSA Info

Mirror-Symmetry	Material Properties	Waveguide Coupling	Additional JSA Info	Literature
0	0	0000	●00	0

Lossy Bandlets

• Approximatively calculated lossy bandlets assuming $\text{Im}(\varepsilon_r) = 0.001$:

Mirror-Symmetry	Material Properties	Waveguide Coupling	Additional JSA Info	Literature
0	0	0000	000	0

Lossy Group Indices

• From the lossy bandlets calculated group indices $n_{\rm gr} = c_0 \frac{dk}{d\omega}$

Zoomed in excerpt on the right, to show the extrema of the bandlets 3 and 5 at anti-crossings [all bandlets show this behavior].

Mirror-Symmetry	Material Properties	Waveguide Coupling	Additional JSA Info	Literature
0	0	0000	000	0

Complete Calculated JSA - linear

propagation-direction and frequency resolved results: $\rightarrow \rightarrow$ $\cdot 10^2$ 200.31- 15 0.305 $\omega_{
m idler} \left[rac{2\pi c_0}{a}
ight]$ - 10 0.3 -50.2950 0.2950.30.3050.31 $\omega_{\text{signal}}\left[\frac{2\pi c_0}{a}\right]$

Mirror-Symmetry	Material Properties	Waveguide Coupling	Additional JSA Info	Literature
0	0	0000	00●	0

Complete Calculated JSA - linear

• propagation-direction and frequency resolved results: $\rightarrow \leftarrow$

Mirror-Symmetry	Material Properties	Waveguide Coupling	Additional JSA Info	Literature
0	0	0000	00●	0

Complete Calculated JSA - linear

• propagation-direction and frequency resolved results: $\leftarrow \leftarrow$

Literature

Mirror-Symmetry	Material Properties	Waveguide Coupling	Additional JSA Info	Literature
0	0	0000	000	•

Literature I

- INRAD Lithium Niobate Datasheet. http://www.lambdaphoto.co.uk/ pdfs/Inrad_datasheet_LNB.pdf.
- [2] GUTMAN, NADAV, W. HUGO DUPREE, YUE SUN, ANDREY A. SUKHORUKOV and C. MARTIJN DE STERKE: Frozen and broadband slow light in coupled periodic nanowire waveguides. Opt. Express, 20(4):3519–3528, feb 2012.
- [3] MALITSON, I. H.: Interspecimen Comparison of the Refractive Index of Fused Silica. JOSA, 55(10):1205–1209, 1965.
- [4] QUINTERO-BERMUDEZ, RAFAEL, SINA SARAVI, FRANK SETZPFANDT and THOMAS PERTSCH: Slow-Light Enhanced Second-Harmonic Generation in Periodic Nanobeam Waveguides. In The European Conference on Lasers and Electro-Optics, page CK_P_8. Optical Society of America, 2015.
- [5] SARAVI, SINA, SÉVERINE DIZIAIN, MATTHIAS ZILK, FRANK SETZPFANDT and THOMAS PERTSCH: *Phase-matched second-harmonic generation in slow-light photonic crystal waveguides*. Physical Review A, 92(6):063821, 2015.

Mirror-Symmetry	Material Properties	Waveguide Coupling	Additional JSA Info	Literature
0	0	0000	000	•

Literature II

[6] ZELMON, DAVID E., DAVID L. SMALL and DIETER JUNDT: Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate. JOSA B, 14(12):3319-3322, 1997.