
Examination of modal excitation in few mode fibers

Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science
[B.Sc.]

verfasst am Institut für Angewandte Optik der Physikalisch Astronomischen
Fakultät der Friedrich-Schiller-Universität Jena

von Johannes Wilde

geboren am 1. September 1991 in Göttingen

Matrikelnummer: 125960



Erstgutachter: Prof. Dr. rer. nat. habil. Richard Kowarschik

Zweitgutachter: Dr. rer. nat. Michael Duparré



Contents

Abbreviations III

1. Introduction 1

2. Theory 3
2.1. Gaussian Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Modes in Weakly Guiding Step-Index Fibers . . . . . . . . . . . . . . . . . . . . . 4
2.3. Correlation Filter Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4. Beamshaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5. Phase Shift ∆Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. Experimental Setup 13

4. Numeric 15
4.1. Numerical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2. Beam Waist Radius σ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3. Free Space Distance ζ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4. Transversal Displacement of the Incident Beam . . . . . . . . . . . . . . . . . . . . 21

5. Experiment 24
5.1. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2. Comparison with a Non-Monolithic Setup . . . . . . . . . . . . . . . . . . . . . . . 28

6. Conclusion and Outlook 31

A. Additional Graphs i

B. References iii

I



II



Abbreviations

#modes number of mutually independent modes guided by a fiber, neglecting the
polarization states

⟨ ∣ ⟩ scalar product of radial field distributions
B average over time
∗ complex conjugation
∇⃗ del operator

α angle of incidence on a fiber front facet
δij Kronecker delta
ζ free space distance between the phase plate and the fiber input plane
η plm overlap integral describing the mode matching of an incident beam with the

mode LP p
lm

η̃ plm η plm normalized to 1 with regard to the maximal incoupled power
Θ(x) Heaviside step function
λ wavelength
λ0 free space wavelength
ρ plm amplitude of c plm
ρ̃ plm ρ plm normalized to 1 with regard to the total incoupled power
σ0 numerically inscribed beam waist radius of the incident Gaussian beam
ϕ angular coordinate in cylinder coordinates
φ plm angular component of c plm
Φ phase of a propagating electromagnetic field
ω0 angular frequency

a fiber core radius
c plm complex expansion coefficient for the expansion of a beam in LP p

lm-modes
CFM correlation filter method
E beam coupled into the fiber
Ein phase shaped irradiating beam
Eirr undisturbed irradiating beam
E p
lm field distribution of the scalar LP p

lm-modes
EG Gaussian beam
e⃗p unit polarization vector
e⃗r unit radial vector
FBG fiber bragg grating
FMF few mode fiber
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FWHM full width at half maximum
Jl(x) Bessel function of the first kind and order l at point x
k propagation constant in propagation direction
Kl(x) modified Bessel function of the second kind and order l at point x
LP-modes linearly polarized modes
NA numerical aperture
Pin total power of Ein

Pincoupled total power of E
PDMS polydimethylsiloxane
SLM spatial light modulator
t time
V normalized frequency or V number
w0 beam waist radius of a Gaussian beam
zR Rayleigh length
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1 Introduction

1. Introduction

Since Corning Glass Works [known today as Corning Incorporated] produced the first optical
fiber featuring an attenuation of less than 20dB/km in 1970, the use of optical fibers, especially
in commercial communications, increased drastically. Also the application in fiber lasers is quite
prominent, which - because of it’s high optical output power [more than 1kW [1] in cw-mode],
compact and robust setup and high beam quality [1] - is mostly used for material processing.
Another application is to use optical fibers as sensors, as they are leightweight, small, sensitive,
immune to electromagnetic interferences [2] and [nearly] do not influence the measured system.

Established fiber sensors are for example a “fiber-optic gyroscope”, that based on the Sagnac
effect can resolve rotations of less than 0.01 °/h [2], a fiber-optic current sensor, that uses the
Faraday effect to change the polarization of the guided beam, and a fiber temperature and
pressure sensor, in which a fiber inscribed with fiber Bragg gratings does not transmit certain
wavelengths. As the latter is the most similar to the setup investigated in this thesis, a very
short display of its characteristics shall be given: The reflected wavelength λB of a Bragg grating
with grating period Λ and effective refractive index neff of the fiber core at the position of the
fiber Bragg grating is λB = 2neff Λ. At room temperature neff is mainly effected by temperature
changes and Λ by strain [2]. These sensors are only sensitive at the position of the fiber Bragg
grating. It is possible to implement multiple, distinguishable sensor points in one fiber via
different multiplexing techniques. To read out the reflected wavelength λB either simple setups,
that are limited in resolution, or more complex setups, that are expensive and have to be
stabilized, are being used [3].

In this thesis a totally different approach was pursued. The principle idea is that external
perturbations [e.g. bends, pressure or impurities] of a fiber act differently on different modes
guided by the fiber [4, 5]. Modes are distributions of the electromagnetic field, propagating
unmodified through the perfect, undisturbed fiber. Using the concept of modes, the complex
electromagnetic field distribution in a fiber can be described with only the complex coefficients
of each guided mode.

In order to be able to use only an intensity measuring photo diode for the measurement, the
modal content coupled into the fiber has to be controlled to ideally one mode only. In order to
achieve this, several techniques already exist: For example a very versatile and adaptive setup
using a spatial light modulator [SLM] has been employed to excite higher order modes [6, 7]
and then investigate the modal dependencies on the bending of the fiber [8]. This setup however
is quite expensive and energetically very inefficient. Another approach is to use passive phase
plates to shape the incident beam [9]. The energetic efficiency of this setup is much higher and
the costs are much lower, the setup however can not be changed easily during the experiment
[6, 9].
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1 Introduction

The subject of this thesis is the investigation of the efficiency of a setup consisting of a binary
phase plate very close to the input facet of an optical fiber [therefore called “monolithic”] with
regard to the energetic incoupling as well as the achievable modal purity. Since such a monolithic
setup never has been investigated before, this thesis provides a proof of principle for the operation
of the modal coupling and will provide an estimation of its capabilities. Additionally this will
be compared to the aforementioned approach of free space phase plates.

In section 2 the physical basics needed to understand the setup [like a Gaussian beam,
LP -modes and the effect of phase plates on a beam] are described. In section 3 the experimental
as well as the numerical setup used in the coming sections will be displayed. The numerical
results will then be presented in section 4, the experimental results in section 5.1. The latter will
also be compared to the numerical simulations and the parameters, that need to be adjusted,
will be pointed out. Finally the comparison with the free space phase plates will be given in
section 5.2.
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2 Theory

2. Theory

In this sections the basics for understanding the setup used in this investigation will be presented.
First a Gaussian beam, as emitted by the laser, will be described. The field distribution derived
here, will be used later in section 2.5 again. Then the modes, i.e. stationary field distributions
during the propagation, will be derived for weak guiding fibers and it will be shortly indicated
how to optically measure their ratio in an optical beam. Finally the basics needed to describe
the incoupling of a beam, that was phase shaped by a binary phase plate, and the dependence
on the phase shift of the phase plate ∆Φ will be presented.

2.1. Gaussian Beam

The commonly emitted field by single mode lasers is a Gaussian beam [10]. Its electric field
distribution E⃗ is derivable from the Maxwell equations, assuming a linear, homogeneous, infinitly
extended medium with refractive index n and no free charges or currents. Taking the curl of
Faraday’s and using Ampère’s and Gauss’s law one easily obtains the wave equation [11]

∇⃗2E⃗G −
n2

c2
∂2

∂t2
E⃗G = 0 , (2.1)

where c = 299 792 458 m
s [12] is the vacuum light velocity and ∇⃗ the del operator.

Considering a monochromatic wave with a predominant propagation direction z [“optical
axis”] and only small angles to the latter, i.e. the paraxial case, the following ansatz can be
made [13]

E⃗G = A(x, y, z) ei[kz − ω0t] e⃗p ; (2.2)

here A(x, y, z) denotes an envelope function, (x, y, z) the Cartesian coordinates, t the time, k
the propagation constant in z direction, ω0 the angular frequency and e⃗p the polarization vector.

Neglecting ∂2

∂z2A compared to the other derivatives, i.e. assuming a slowly varying envelope
function, one solution normalized in regard to it’s total power P = ∫R2 ∣E⃗G∣

2 dxdy = 1 is

E⃗G(r⃗) =

√
2πw0

λ

1
−z + i zR

e
− ik x2 + y2

2[−z + i zR]
+ i[kz − ω0t]

e⃗p , (2.3)

where the wavelength λ, the Rayleigh length zR, the beam waist radius w0 and an arbitrarily
oriented unit polarization vector e⃗p are used. This is the transversal fundamental mode for
lasers of many types [14].

The beam radius is defined as the radius w =
√
x2 + y2, at which the respective absolute axial
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2 Theory

values of E⃗G drop to the 1
e -th fraction. It is

w(z) = w0

√

1 + [
z

zR
]

2
. (2.4)

The Rayleigh length zR ist the distance between the beam waist position and where it’s cross
section area is two times the size; i.e. where w(zR) =

√
2w0. It is

zR =
π

λ
w2

0 . (2.5)

z0 zR

w0
√

2w0

w(z)

Figure 1: Cross section of a Gaussian beam with propagation direction e⃗z.

2.2. Modes in Weakly Guiding Step-Index Fibers

Optical single core fibers in general consist of three very long concentric dielectric cylinders [for
a lateral cross section see figure 2]:

1. the core: the innermost, where the light is guided;

2. the cladding: the first outer, which by its lower refractive index leads to the guidance of light
in the core;

3. the coating: the outermost, that protects the fiber from destruction by external forces.

The guidance of light in the core of the fiber is understood by total internal reflection at the
boundary surface between the core and the cladding. Therefore the index difference

∆n = ncore − ncladding
!
> 0 (2.6)

has to be greater than zero.
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ncore

ncladding

ncoating

nair

α
a

Figure 2: A schematic representation of a cross section of a single core step-index fiber [α denotes
the angle of incidence of the light, a the core radius and ncore, ncladding, ncoating and
nair the respective refractive indices].

Starting from a geometrical optic approach, the maximum acceptance angle α [see figure 2]
fulfills

NA = nair sin(α) =
√
n2
core − n

2
cladding , (2.7)

where NA is the numerical aperture.

Considering a more sophisticated approach utilizing Maxwell’s equations and assuming all
the sections of the fiber to be homogeneous, isotropic and linear as well as the index difference
∆n to be small [typically in the magnitude of 1 × 10−4, i.e. “weakly guiding fibers”], one again
obtains the wave equation (2.1) [15]

∇⃗2E⃗ −
n2

c2
∂2

∂t2
E⃗ = 0 , (2.8)

however now the refractive index n is radially dependent: It is n = ncore inside the core and
n = ncladding outside the core. I.e. the cladding is assumed to expand to infinity; as for guided
modes in this paraxial case a quite strong decay of the E⃗-field in the cladding is expected, this
only induces a very small error.

With these assumptions, choosing z as the propagation direction for a monochromatic wave
of angular frequency ω0 and propagation constant β and using cylindrical coordinates (r,ϕ, z),
which are most suitable for this problem, the ansatz

E⃗ = E0R(r)P(ϕ) ei[βz − ω0t] e⃗r (2.9)

can be made [15]. It depicts E0 an arbitrary amplitude, t the time and e⃗r a transversally
arbitrarily oriented, unit polarization vector.
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As (2.8) has no effect on the polarization state, the direction of e⃗r is independently eligible.
By choosing two orthonormal vectors in the transversal plane, all possible polarization states
can be described using a superposition of these two.

Regarding the remaining problem, i.e. only the scalar one, one obtains from (2.8) and (2.9)
by separating the variables the following two equations [l ∈ C]:

∂2

∂ϕ2P(ϕ) + l
2P(ϕ) = 0 , r2 ∂

2

∂r2R(r) + r
∂

∂r
R(r) + [[k2 −β2]r2 − l2]R(r) = 0 . (2.10)

From the smoothness of the solutions and ϕ being 2π-periodic, the periodicity of the azimuthal
component P(ϕ) follows. Therefore with l being a positive integer or 0 one obtains all possible
solutions.

The right equation has, after rescaling r, the form of Bessel’s differential equation [15]. As
only squared integrable and convergent functions are solutions of interest, it follows

kcore ≥ β ≥ kcladding , (2.11)

where k0 is the free space propagation constant and kcore = ncore k0 and kcladding = ncladding k0 are
the values in the respective medium.

With
u = a

√
k2
core − β

2 and w = a
√
β2 − k2

cladding (2.12)

one obtains from the smoothness of the derivative of the E-field at r = a [11]

−
Jl(u)

uJl−1(u)
=

Kl(w)

wKl−1(w)
. (2.13)

It is Jl the Bessel function of the first kind and order l and Kl the modified Bessel function of
the second kind [also called modified Hankel function or Macdonald function] and order l.

This is only solveable for discrete u and w. As for each l ∈ N0 there can exist several solutions
(u,w), they are named (ulm,wlm) , m ∈ N enumerating them. To illustrate this, in figure 3 both
sides of (2.13) are plottet for l = 0 and the intersections are enumerated with the respective
m-value.

Correspondingly only discrete βlm are possible.
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m = 1 m = 2

u

1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

Figure 3: Plot of the left-hand side [solid] and the right-hand side [dashed] of (2.13) for V = 4.847
[see (2.15)] and l = 0 over u.

Now the physically relevant eigensolutions in the paraxial approximation, disregarding the
polarization states, are:

E p
lm = E0

⎧⎪⎪
⎨
⎪⎪⎩

1
Jl(ulm)

Jl(ulm
r

a
) ⎫⎪⎪

⎬
⎪⎪⎭

cos(lϕ + ϕp
0 ) ei[βlmz − ω0t]

,0 ≤ r < a

1
Kl(wlm)

Kl(wlm
r

a
) , a ≤ r

. (2.14)

It is p ∈ {e, o}, without loss of generality ϕ e
0 = 0 [as the cosine is even] and ϕ o

0 =
π

2 [as the
sine is odd], Jl inside the core [0 ≤ r < a] and Kl outside the core [r ≥ a]. The normalization
constants 1

Jl(ulm)
and 1

Kl(wlm)
respectively ensure the continuity of the solution. These modes

are called LP -modes, because they are linearly polarized.

The square root of the quadratic sum of ulm and wlm yields the normalized frequency [or V
number] [16]

V =

√

u2
lm +w2

lm = k0 a NA . (2.15)

For V greater than 5 the total number of mutually independent modes guided by the fiber
[neglecting the polarization states] can be approximated by [16, 17]

#modes ≈
V 2

4 . (2.16)

.
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The LP -modes are orthonormal; i.e. :

⟨E p
lm ∣E q

no⟩ = ∫
R2

dAE p ∗
lm E q

no = δln δmo δpq , (2.17)

δij depicting the Kronecker delta and the asterix ∗ complex conjugation.

Thus every guided optical field distribution E is expandable in a series of these LP -modes:

E = ∑
l,m,p

c plmE
p
lm , (2.18)

where
c plm = ρ plm eiφ plm = ⟨E p

lm ∣E⟩ ∈ C , ρ plm ∈ R≥0 , φ plm ∈ [0,2π) (2.19)

are the complex expansion coefficients.

2.3. Correlation Filter Method

As with standard light sensors [photo-resistors, photo-diodes or cameras] only the timely averaged
intensity ∣E∣

2 is directly measurable, c plm can’t be directly determined. [The overbar B stands
for the average over time.]

But by considering the following transmission function for an optical filter [18]

T (ξ⃗) = ∑
l,m,p

E p ∗
lm ei ν⃗ plmξ⃗ + ∑

l,m, p

(l,m, p) ≠ (f, g, h)

1
√

2
[E h ∗

fg +E p ∗
lm ] ei ν⃗ ′ plm ξ⃗ + ∑

l,m, p

(l,m, p) ≠ (f, g, h)

1
√

2
[E h ∗

fg + iE p ∗
lm ] ei ν⃗ ′′ plm ξ⃗ ,

(2.20)

where ξ⃗ ∈ R2 names the coordinates in the filter plane and ν⃗ plm ∈ R2, ν⃗ ′ plm ∈ R2 and ν⃗ ′′ plm ∈ R2

are all different spatial frequencies, one obtains in the Fourier plane [either in the far field or by
employing a single lense in a 2f -setup behind the filter], assuming ν⃗ plm, ν⃗

′ p
lm and ν⃗ ′′ plm are distant

enough from each other, the following values at the respective spatial frequencies:

ν⃗ plm ∶ I plm = ∣c hfg∣
2
= ρ plm

2
,

ν⃗ ′ plm ∶ I ′ plm = 1
2 ∣c

h
fg + c

p
lm∣

2
= 1

2 [ρ hfg
2
+ ρ plm

2
+ 2ρ hfg ρ

p
lm cos(φ hfg − φ

p
lm)] ,

ν⃗ ′′ plm ∶ I ′′ plm = 1
2 ∣c

h
fg + i c plm∣

2
= 1

2 [ρ hfg
2
+ ρ plm

2
+ 2ρ hfg ρ

p
lm sin(φ hfg − φ

p
lm)] .

(2.21)

E h
fg is an arbitrarily choosable reference mode for the phase measurement. It is obvious, that

for meaningful I ′ plm and I ′′ plm ρ hfg has to be nonzero.
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The transformation into the Fourier plane thereby performs exactly the scalar product from
(2.17) at each of the above mentioned spatial frequencies for the corresponding mode.

In case of a coherent E-field, the phase-relations are found by

φ plm − φ hfg = −atan
⎛

⎝

2 I ′′ plm − I hfg − I
p
lm

2 I ′ plm − I hfg − I
p
lm

⎞

⎠
∈ (−π,π] . (2.22)

By inscribing the transmission function T (ξ⃗) into a computer generated hologram [CGH]
and evaluating the intensities at the spatial frequencies, the full modal content of a linearly
polarized, coherent beam can be determined in real-time.

Additionally considering the two possible transversal polarization states of each previously
described LP -mode, the parameters needed to describe the linearly polarized, coherent electric
field E⃗ become twice as many.

2.4. Beamshaping

In order to control the excitation of particular modes inside an optical fiber, several approaches
have already been made: As one approach only the phase profile of the incident beam has
been shaped. Therefore several experimental realizations have been investigated already [e.g.
a passive phase plate in free space [19, 20], a spatial light modulator [6–9] or a phase profile
directly machined on the fiber tip [21]]. In an other approach the phase and the amplitude profile
of the incident beam have been modified [9]. All these techniques show different characteristics.

One quantity, that describes the coupling efficiency of the incoming electric field Ein to each
LP -mode E p

lm, is the following overlap integral [22]:

η plm =
∣∫ E

p ∗
lm Ein dA∣

2

∫ ∣E p
lm∣

2 dA ∫ ∣Ein∣
2 dA

(2.23)

If η plm is dependent on several variables [for notation they shall be combined to a single vector x⃗
at this moment] and if x⃗max depicts the position where ∑

l′,m′,p′
η p

′

l′m′(x⃗max) is maximal, then the

following two normalized quantities shall be defined:

η̃ plm(x⃗) =
η plm(x⃗)

∑
l′,m′,p′

η p
′

l′m′(x⃗max)
and ρ̃ p 2

lm (x⃗) =
η plm(x⃗)

∑
l′,m′,p′

η p
′

l′m′(x⃗)
. (2.24)

9



2 Theory

η̃ plm describes the coupling efficiency, normalized to a maximum value of 1, and ρ̃ p 2
lm describes

the relative modal energy coupled into the beam for each x⃗.

If the total transversal power Pincoupled = ∫ ∣E∣
2 dA inside the fiber is normalized to 1, then it

is
ρ̃ p 2
lm = ρ p 2

lm . (2.25)

Obviously, by modulating the amplitude and phase distribution of the irradiating beam
Eirr to obtain an incident beam at the fiber tip Ein exactly adapted to the desired mode E v

st,
the overlap integral η plm becomes maximal with respect to the desired mode [η vst → 1] and
minimal with respect to the undesired modes [η plm → 0 , (l,m, p) ≠ (s, t, v)]. The same holds
for the relative power of each mode inside the fiber ρ̃ p 2

lm [ρ̃ v 2
st → 1 and ρ̃ p 2

lm → 0 , (l,m, p) ≠ (s, t, v)].

However by shaping the amplitude profile, a lot of the initial power of Eirr is lost. At least if
the irradiating beam is not already very similar to the desired mode, like a Gaussian beam and
an LP01-mode. This is understandable if one considers that the point of maximum power of the
desired mode might be where the intensity of Eirr is small and that the intensity at every other
point has to be attenuated, so its proportion to the maximum power is right.

As for lower order LP -modes the phase profile is “the most prominent differentiator between
modes” [9] and via pure phase shaping no power loss from Eirr to Ein is induced, for FMFs mere
phase shaping seems the more reasonable approach.

The insertion loss though, not because of reflections at the fiber input plain, but because
of the missing amplitude profile adjustment, will be bigger. For a quantitative statement the
experimental setup hence was first investigated by numerical simulations of the coupling process,
as shown in section 4.

The phase plates used in this study consist of binary phase profiles, adjusted to the phase
profiles of the desired modes [see section 2.5 on page 11 figure 5 and section 4.1 on page 15
figure 9].

The phase shift is induced via an optical element with refractive index nph in a medium with
refractive index n. If the thickness of this element varies by d [see figure 4], the induced phase
shift is

∆Φ = [nph − n]
d

λ0
2π , (2.26)

where λ0 is the free space wave length of Eirr.

10
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Ein Ð→

nph d

Eirr Ð→

n

Figure 4: Scheme of the effect of a phase plate on the phase profile of a Gaussian beam at its
waist.

2.5. Phase Shift ∆Φ

From formula (2.14) one sees, using cylindrical coordinates (r,ϕ, z), that the transversal phase
profile of the LP -modes E p

lm form = 0 is proportional to cos(lϕ+ϕ0). Accordingly the phase plate
for the excitation of the LP01-mode 0 shows only one section of constant phase shift ∆Φ. The
phase plate for excitation of LP11 1 is divided in two sections [ϕ ∈ [0°,180°) and ϕ ∈ [180°,360°)]
with each constant phase shifts 0° or ∆Φ respectively. The phase plate for the excitation of
the LP21-mode 2 is divided in four sections [ϕ ∈ [0°,90°),ϕ ∈ [90°,180°),ϕ ∈ [180°,270°) and
ϕ ∈ [270°,360°)] with alternating phase shifts 0° and ∆Φ. Their phase shift profiles are shown
in figure 5.

-20 0 20

-20 

0 

20 

-20 0 20

-20 

0 

20 

-20 0 20

-20 

0 

20 

 

 

0

∆Φ

0°

∆Φ

Figure 5: Transversal phase plate phase shift profiles [ 0 , 1 , 2 ]; dimensions in µm.

By considering the symmetry of the phase plates and the LP -modes, it is evident that for
∆Φ = 180° a Gaussian beam EG phase shifted by phase plate l only couples in LP -modes E p

lm

with the same l.

IF ∆Φ different is to 180° for a phase plate l , then the phase shifted beam Ein can be
described by superposing an unperturbed beam Eirr of different relative amplitude ρ̃0 with a
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perfectly phase shifted one of respective relative amplitude ρ̃l. The amount of energy in each
of the superposed beams can be calculated by an overlap integral similar to η̃ plm [see page 9]
and leads the same result for all phase profiles corresponding to LP -modes with m = 0. As an
example for LP11 it is [EG normalized with regard to its power to 1]

ρ̃ 2
0 = ∣∫

∞m

0m
∫

360°

0°
E ∗
G [EG [Θ(ϕ − 180°) +Θ(180° − ϕ) ei ∆Φ] ]dr dϕ∣

2

=
1
2[1 + cos(∆Φ)] ;

(2.27)
with Θ(x) being the Heaviside step function. Because ρ̃ 2

0 + ρ̃
2
l = 1, it follows easily that

ρ̃ 2
l =

1
2 [1 − cos(∆Φ)] . (2.28)

All other ρ̃ 2
n , n ≠ l and n ≠ 0 are, when using a phase plate l , zero; this is obvious by

considering again the symmetry of the phase profiles.
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3 Experimental Setup

3. Experimental Setup

A scheme of the experimental setup is shown in figure 6. The laser source was a Nd:YAG
laser that emitted a Gaussian beam [beam quality factor M2

eff = 1.21] at a single wavelength of
1064nm. The beam was coupled by a microscope objective [f = 10.0mm] into the used fiber
[Nufern LMA-GDF-25/250-M, douple clad, core radius a = 12.5µm±1.5µm, NA = 0.065±0.005],
at which’s front facet a binary phase plate passively shaped the incident beam. These phase
plates were manufactured specially for this experiments at the Institute of Photonic Technology
Jena [IPHT Jena] by making a mold in polydimethylsiloxane [PDMS] from a silicon structure.
Because for the refractive index of PDMS at the used wavelength at first only a rough estimation
[nPDMS ≈ 1.5] existed, an estimated thickness difference of d = 1064nm was manufactured. On
each of the phase plates several copies of one of the structures shown in figure 7 were inscribed.
The phase plates were then fixated by adhesive forces, centered on a metal cylinder, in which’s
center one fiber end stuck. This way the free space distance between fiber input facet and phase
plate was minimized. This setup will be called “monolithic”.

A second microscope objective with a focal length of f = 25.4mm together with a lense with
a focal length of f = 375mm in a 4f -setup magnified the beam after the fiber, in order to adjust
the beam size to the hologram in the correlation filter. The correlation filter was fabricated as
a binary amplitude hologram at the IPHT Jena by laser lithography. The technique used to
encode the transmission function was the one suggested by Lee [23], as it features the better
signal to noise ratio compared to Lohmann holograms [24]. The hologram consists of 512 × 512
Lee cells, that each are 16µm×16µm wide and show a smallest structure of 700nm. The second
lense [f = 180mm] fourier transformed the signal of the correlation filter in a 2f setup onto a
camera [1/1.8′′ CCD, 1600 × 1200 pixels, each 4.4µm × 4.4µm].

P L1 L2MO2 BS

CCD1
CCD2

CFMO1
FMF

HP

LS

HWP

PP

Figure 6: Scheme of the experimental setup [ LS - laser source, MO1,2 - microscope objectives,
PP - phase plate, HP - Hexapod, FMF - few mode fiber, HWP - 3λ

2 waveplate,
P - polarizer, L1,2 - lenses, BS - beam splitter, CCD1,2 - cameras, CF - correlation
filter].
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3 Experimental Setup

By rotating the half wave plate in front of the Glan-Thompson prism, the polarization under
investigation could be chosen without having to rotate the prism. Thereby the prismatic
deviations were minimized [25]. The camera CCD1 captured the nearfield emitted by the fiber,
in order to be able to control the quality of the reconstruction via the correlation filter method
[CFM].

2 regions

appr. 125µm

4 regions

appr. 125µm

Figure 7: Excerpts of the actual transversal thickness profiles of the phase plates used for the
monolithic setup.

For the numerical simulations the modal analysis of the incoupled beam E could be performed
numerically, i.e. without the CFM. Therefore, as shown in figure 8, an irradiating Gaussian
beam Eirr was simulated, that was phase shaped by a phase plate to the beam Ein incident on
the fiber, which then coupled into the fiber to the guided beam E. The distance between phase
plate and fiber input facet will be called ζ.

Ein

nph d

Eirr Ð→

ζ

fiber

E Ð→

Figure 8: Scheme of the effect of a phase plate on the phase profile of a Gaussian beam at its
waist.

Additionally σ0 will be used. This parameter describes the inscribed beam waist radius of
the incident Gaussian beam. The purpose of using σ0 instead of w0 is to emphasize that the
Gaussian beam, after beeing modified by the phase plate, does not propagate the same way as
without beeing modified. For the simulations the undisturbed beam waist was always assumed
to be at the fiber input plane.

14
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4. Numeric

In this section the numerical results concerning the modal coupling efficiency depending on the
beam waist radius of the incident beam σ0 [4.2], the free space distance between the phase plate
and the fiber input plane ζ [4.3] and the transversal misalignement of the incident beam [4.4]
will be displayed.
At first though the outsets used for the simulations will be described.

4.1. Numerical Setup

The fiber Nufern LMA-GDF-25/250-M is a step index fiber with a cylindrical core with an
assumed radius of a = 12.25µm and refractive index ncore = 1.4515. Because of the strong decay
of the guided mode’s power in the cladding, no other regions outside of it were numerically
considered. The cladding was assumed to be undoped glass and therefore ncladding = 1.4500.

The guided LP -modes were determined numerically via a scalar finite difference modesolver
[26] and are shown in figure 9.
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Figure 9: Amplitude and phase [insets] profile of the six guided LP -modes in the Nufern LMA-
GDF-25/250-M of wavelength λ = 1064nm calculated numerically; dimensions in
µm.
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As mentioned earlier, the phase-profile, as displayed in the insets in figure 9, is a very
“prominent differentiator between [these lower order] modes” [9].

The phase plates used for the simulation were already described in section 2.5 on page 11 and
turn out to be in very good agreement with the numerical results for the phase profiles of the
LP -modes shown in the insets in figure 9.

It should be noted, that all of the following calculations have been made, distinguishing
between even and odd LP -modes. Yet, considering the perfect azimuthal symmetrie of the
assumed fiber profile, it is obvious that the rotation of the phase plate and the arbitrariness
of the orientation of the even and odd modes make this unnecessary. Only if one considerd
symmetry-breaking disturbances on the fiber, this would be required. This however is not
subject of this study.

Additionally in real FMFs mode mixing mainly between the two even and odd orientations of
one LP -mode and simultaneously between the orthogonal polarization states occurs [“modal
birefringence” and “random coupling” [27]], which makes the knowledge about the excited
LP -mode in respect to it’s orientation useless, as the modal content might have changed at
another posititon in the fiber.
Thus only the mode group resolved modal contents of Eincoupled are displayed in the following.
One obtains these by

ηlm = ∑
p∈{e,o}

η plm , η̃lm = ∑
p∈{e,o}

η̃ plm , ρ 2
lm = ∑

p∈{e,o}
ρ plm

2 and ρ̃ 2
lm = ∑

p∈{e,o}
ρ̃ p 2
lm . (4.1)

4.2. Beam Waist Radius σ0

First the dependency of the excited mode spectrum on the beam waist radius of the incom-
ing Gaussian beam σ0 was investigated, neglecting all other possible errors or misalignments.
Therefore a Gaussian beam was calculated numerically at its waist, scaled for different σ0 and
phase shifted in its transversal profile corresponding to the phase plates shown in figure 5 on
page 11. Then the overlap with each of the modes shown in figure 9 was calculated. In figures
10, 11 and 12 the dependencies for the different phase plates are shown.

16



4 Numeric

The results for the phase plate 0 , which is equivalent to using no phase plate at all, in figure
10 show, in accordance with the azimuthal symmetry of the fiber and the incident beam, that
only the azimuthally symmetric LP01- and LP02-mode are excited.

The beam waist radius with maximal energy coupled into the LP01-mode in this setup is
σmax = 9.97µm. However, at this size the energy coupled into the fiber is not maximal [99.3%
instead of 99.6%], because the radii of maximal coupling efficiency are different for all modes.
That more than 99.3% are coupled into the LP01-mode is due to the resemblance of a gaussian
beam with the LP01-mode.

The fact that there is only one maximum of incoupling efficiency should be noted; by knowing
that there are no local maxima beside this one, the experimental adjustment with phase plate
0 for LP01 in regard to the beam size σ0 is simplified to locating an intensity maximum.
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Figure 10: Modal coupling efficiency ηlm depending on the beam waist radius of the incident
Gaussian beam σ0 with phase plate 0 .

A more accurate estimation for the refractive index of the monolithic phase plate material,
compared to the first quite rough guess prior to the first manufacturing of a phase plate, yielded
nPDMS ≈ 1.43. Therefore for the simulation in addition to the perfect value of ∆Φ = 180°, also
∆Φ = 144° was taken into account. The latter value originated from the downward estimation
that nPDMS ≈ 1.40, together with the knowledge that the difference in the thickness of the phase
plate was d = 1064nm.

For a phase plate like 1 the azimuthal symmetry is broken. For ∆Φ = 180° the symmetry of
the incident beam is changed exactly to the one of the LP11-mode and thus independent of the
beam waist radius of the incident beam only LP11 is excited, as shown in figure 11.
The maximal amount of incoupled relative to the incident energy is 72.9% for σmax = 12.7µm.
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This means that even in the best aligned setup more than a quarter of the incident energy is
lost! This loss results from the missing alignment of the amplitude profile.

For ∆Φ = 144° LP01 and LP02 are excited as well, which can be explained by considering the
presence of an unperturbed Gaussian beam in the incident beam, as described in section 2.5
on page 11. LP02 however for this setup is excited with a negligible percentage of less than
η̃02 = 0.4% around the maximum of the coupling efficiency for LP11 [again σmax = 12.7µm]. LP21

is not excited at all; this is no surprise, as the overlap integrals of a LP2m-mode with a Gaussian
beam as well as with a Gaussian beam shaped by phase plate 1 are zero.

Although the overall amount of energy coupled into the fiber at the maximum of η11 for
∆Φ = 144° is bigger [75.2%] compared to a phase-plate 1 with ∆Φ = 180° [72.9%], the amount
of energy in LP11 is smaller [65.9% instead of 72.9%]. At the same time the ratio of LP11 in
the incoupled beam [ρ̃ 2

11] drops from 100% for ∆Φ = 180° to 87.7% for ∆Φ = 144°.

Because by changing ∆Φ only the magnitude of the perfectly adapted Gaussian beam varies,
it is obvious that the course of the incoupling efficiency over σ0 doesn’t vary at all; only the
amplitude changes corresponding to ρ̃ 2

l =
1
2 [1 − cos(∆Φ)] [see section 2.5 on page 11].

For both ∆Φ only one maximum of the total incoupled energy exists, which in both cases is
very near to the maximum of η11.
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Figure 11: Modal coupling efficiency ηlm depending on the beam waist radius of the incident
Gaussian beam σ0 with phase plate 1 and ∆Φ = 180° and ∆Φ = 144° respectively.

What has been said for phase plate 1 with respect to LP11 now holds for phase plate 2
with respect to LP21 as well, at least qualitatively [compare figure 12].

Quantitatively for ∆Φ = 180° the maximum of η21 is even smaller with 67.2% [for σmax =

15.1µm]; i.e. the loss in the best adjusted setup is nearly a third. This loss again originates
from the misalignment of the amplitude profile of the incident beam Ein.
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For ∆Φ = 144° the maxima [again σmax = 15.1µm] are even smaller compared to the setup
with phase plate 1 as well; the maximal incoupled total energy is 69.6% of the incident and
then the purity of LP21 is decreased to 87.4%.

This as well is understandable by a superposition of an undisturbed and a phase-profile-adapted
Gaussian beam.
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Figure 12: Modal coupling efficiency ηlm depending on the beam waist radius of the incident
Gaussian beam σ0 with phase plate 2 and ∆Φ = 180° and ∆Φ = 144° respectively.

The radii of maximal incoupling efficiency for each phase plate are not affected by the phase
shift ∆Φ. This again is understandable by the superposition of two identical Gaussian beams
with respective phase profiles and different amplitudes, as the ∆Φ-change only alters the ratio
of the perfectly adapted gaussian beam and doesn’t affect it’s radius.

4.3. Free Space Distance ζ

The LP -modes are weak guiding fiber- and not free space modes; i.e. while propagating through
free space, the profiles inevitably change. Especially at the sharp edges in the phase profile
diffraction will occur. Thus the distance ζ between the phase-shaping element and the fiber
input plane should be minimal. This is the reason for investigating this monolithic setup of
fiber and phase plate instead of one with the phase plate far away from the fiber input facet.

Therefore in the numerical setup the incident gaussian beam was modified by the phase plate
not at its waist but ζ before it. Then it was numerically propagated by ζ and eventually the
overlap integral ηlm with the fiber modes were determined. The results for the optimal Gaussian
beam radius σmax, the total energetic incoupling ratio Pincoupled

Pin
and the energetic ratio for the

desired mode ρ̃ 2
lm in the incoupled beam E in the fiber are displayed for phase plate 1 in figure
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13 and for phase plate 2 in figure 14.

In both figures the same situations as described in the previous section are displayed for
∆Φ = 180° and ζ = 0µm. The bigger ζ, the smaller σmax becomes, i.e. the phase shifted gaussian
beam diverges, allthough the undisturbed beam was still before its waist position. For both
investigated phase plates σmax decreases slowly at first [ζ < 150µm], then falls quite rapidly and
finally decreases further asymptotically. For distances of ζ bigger than 750µm no calculations
have been made, as in the experimental setup the distance between phase plate and fiber input
facet was definitly smaller than this.

The change in σmax from ζ = 0µm to 750µm is not as big for 1 [6.1µm] as for 2 [10.7µm].
This means, a Gaussian beam modified by the phase plate 2 diverges much faster in free space
than one modified by the phase plate 1 .

As displayed in figure 13, the amount of incoupled energy varies for the phase plate 1 between
73.8% and 65.1% and shows a local minimum at ζ = 240µm ± 10µm; the global maximum is at
ζ = 1µm ± 1µm, i.e. slightly bigger than zero. The free space propagation leads to a smoothing
of the amplitude profile and adjusts the incident beam this way more to the LP11-mode. The
difference in the incoupled energy however is quite small.

For the phase plate 2 [see figure 14] the amount of incoupled energy varies between 68.6%
and 41.1% and shows a local minimum at ζ = 200µm ± 10µm; the coupling efficiency thus,
as shown in the previous section for ζ = 0µm, is worse for phase plate 2 compared to phase
plate 1 . The global maximum is at ζ = 1µm ± 1µm. This is, because of the smoothing of the
amplitude profile during free space propagation, again slightly bigger than zero.

ρ̃ 2
lm of the desired mode can for both phase plates be kept above 99.9% for ζ ∈ [0µm,750µm]

and ∆Φ = 180°. That means during a free space propagation smaller than 1mm the phase
profiles do not change, only the amplitude profiles vary.
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Figure 13: σmax, Pincoupled
Pin

and ρ̃ 2
11 over ζ using the phase plate 1 with ∆Φ = 180° and ∆Φ = 144°

respectively.
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Figure 14: σmax, Pincoupled
Pin

and ρ̃ 2
21 over ζ using the phase plate 2 with ∆Φ = 180° and ∆Φ = 144°

respectively.

For ∆Φ = 144° the results are very similar:

The numerically inscribed beam waist diameter for maximal coupling efficiency in the respec-
tive desired mode σmax differed for both phase plates less than 0.1µm from σmax for ∆Φ = 180°.
As long as the propagation of the light is linear, which it was assumed at all times, σmax should
be independent of ∆Φ, as ∆Φ influences only the ratio of the best adapted beam in the incoming
field Ein.

The amount of incoupled energy was slightly bigger [up to 4%], because of the excitation of
LP01 and LP02. Since at the same time the attenuation of the desired mode was not too strong,
this led to slightly more energy being coupled into the fiber.

If the free-space distance between the phase plate and the fiber input facet is greater than
0µm, then the purity of the desired mode for ∆Φ ≠ 180° is worse than for ζ = 0µm. This means
the values determined for ζ = 0µm represent the best possible values in regard to the purity of
the desired mode.

4.4. Transversal Displacement of the Incident Beam

Finally the dependence of the modally resolved coupling efficiency ηlm on the displacement of
the incident beam in the transversal plane is investigated. Therefore a perfect monolithic setup
[ζ = 0µm], a phase plate phase shift of ∆Φ = 180° and an incident Gaussian beam of adapted
size are assumed; the results are shown in figures 15 to 17.

The different scales in the coloring of the figures should be noted! As mentioned above, the
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maximal coupling efficiency becomes smaller from phase plate 0 over 1 to 2 .

Because some of the power distributions shown in figures 15 to 17 might seem similar to
modal intensity distributions, it shall be emphasized that quite contrary the power in each mode
group depending on the transversal displacement of the incident Gaussian beam is displayed.

As a quantitative measure for the sensitivity of this setup on the displacement of the incident
Gaussian beam the full width at half maximum for the incoupled intensity of the respective
desired mode was chosen; the values are shown in table 2.

Table 2: Full width at half maximum for the respective desired mode in the monolithic setup.

0 1 2
∆Φ = 144°

16.6µm
19.2µm 24.6µm

∆Φ = 180° 18.2µm 24.6µm

It is noteworthy that all of these values are smaller than the respective diameter of the incident
Gaussian beam [ 0 : 2σmax = 19.9µm, 1 : 2σmax = 25.4µm, 2 : 2σmax = 30.2µm]. To put this in
perspective, it is mentioned that the fiber core diameter is 2a = 24.5µm.

By considering that, while the desired mode is exited more weakly by a displacement of the
incident beam, other modes are excited stronger, it is apparent that the purity of the desired
mode has to decrease even faster. Thus a good adjustment of the setup is essential for a strong
excitation of only the desired mode.
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Figure 15: ηlm with phase plate 0 and a beam with σ0 = 9.97µm; dimensions in µm.
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Figure 16: ηlm with phase plate 1 with ∆Φ = 180° and a beam with σ0 = 12.7µm; dimensions
in µm.
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Figure 17: ηlm with phase plate 2 with ∆Φ = 180° and a beam with σ0 = 15.1µm; dimensions
in µm.

In order to adjust an experimental setup pertaining to the transversal displacement of the
incident beam, the fact that the total incoupled energy does not have to be maximal with a
centered beam has to be considered. However by knowing the other paramters [beam size σ0,
phase shift ∆Φ, free space propagation distance ζ], which are defined by the setup, one can
numerically simulate the situation quickly and thus make it possible to adjust the incident beam
transversally by a simple power measurement behind the fiber.
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5. Experiment

In this section the experimental results achieved by the setup described in section 3 will
be presented. After comparing these to the numerical predictions from section 4.4, a short
comparison to a setup, where phase plate and fiber are much more distant from each other, will
be given.

5.1. Results

The experimental analyses have all been made resolved in even and odd modes as well as in the
linear polarizations [under 0° and 90° relative to the polarization state of the laser].

The distribution of incoupled energy between the even and odd modes in one mode group was,
considering some experimental imperfections, in good agreement with the numerical predictions.
These however were not displayed in this paper, because of the aforementioned symmetry of the
fiber and the arbitrariness of the orientation of even and odd modes.

The distribution of the incoupled energy between the two orthogonal polarization states
featured [at the best adjusted position of the experiments] ratios shown in table 3. This is due
to the modal birefringence [27], which obviously varies in its effect for the LP -modes Ep

lm with
different l. Especially the LP01-mode, which showed to be quite strong under 0°-polarization,
was much weaker even relative to the LP -modes with l = 1 or l = 2 under 90°-polarization.

Table 3: Measured energy ratios between the different polarization states [0° ∶ 90°].

0 > 20 ∶ 1
1 10 ∶ 1
2 2 ∶ 1

The dependencies of the modal coupling efficiency on the Gaussian beam waist radius σ0,
the free space between phase plate and fiber input facet ζ and the phase plate phase shift ∆Φ,
which in section 4 were numerically investigated, weren’t experimentally tested. For σ0 the
optimal value was chosen and ζ and ∆Φ were fix for the setup and could not be changed easily.

The dependence of the modal power in the fiber on the transversal displacement of the
Gaussian beam for the phase plate 0 is depicted in figure 18. The very good agreement with
the numerical predictions from section 4 [figure 15 on page 22] is apparent. The numerically
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perfect annuli for LP02, LP11 and LP21 however are all cut off on one side; this indicates a slight
tilt of the incident beam against the fiber front facet.

The maximum purity of LP01 and the coupling efficiency of this setup will be discussed later
[page 27], in order to compare the characteristics of all investigated phase plates with each
other.

The short line of higher intensity in one of the lower lines of the diagrams measured with the
hexapod doesn’t mean anything: Because the capture of each diagram took approximately ten
minutes and all lights and computer monitors were turned off in the laboratory, I left for that
time. Often then I came back a little to early, so that the ceiling illumination from the corridor
outside the laboratory disturbed the measurement. But from this, it is now visible that the
diagram was captured in horizontal lines from the top to the bottom; each line was rasterized in
the same orientation.
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Figure 18: Experimental modal coupling efficiency η̃lm for phase plate 0 depending on the
transversal displacement of the incident beam; dimensions in µm.

The results for phase plate 1 are shown in figure 19. It is evident that there are differences
to the numerical simulation in section 4.4 [figure 16 on page 23]. Nevertheless LP11 is still the
strongest excited mode in the fiber for the optimal coupling position.
To reproduce the experimental results numerically several approaches have been made; by

choosing a vertical [corresponding to figure 5 on page 11] displacement of the phase plate relative
to the center of the fiber of about 2µm, setting the phase shift of the phase plate to ∆Φ = 144°
and the beam waist radius to σ0 = 15µm, the measured profile can be approximated. The most
important parameter here is the displacement of the phase plate.
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Figure 19: Experimental modal coupling efficiency η̃lm for phase plate 1 depending on the
transversal displacement of the incident beam; dimensions in µm.

For phase plate 2 the measurement with the hexapod yielded results that again indicate a
displacement of the phase plate [this time diagonally [corresponding to figure 5 on page 11] by
3µm]. Hence the resemblance to the simulation was quite poor and therefore the measurement
is not displayed here.

Chronologically before the fully automated measurement with the hexapod a manual scan
has been performed. This manual measurement yielded the results shown in figure 20. Because
these scans show LP21 as the most dominant mode by far in correspondence with the numerical
simulation shown in figure 17 on page 23 and because the course of the spatial dependence
is also very similar, the phase plate is assumed to have shifted during the installation of the
hexapod into the setup. This is not unlikely, as the fiber had to be taken out of the setup and
put back in, in order to install the hexapod, and the phase plate was only fixated by adhesive
forces on a metal mount around the fiber.
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Figure 20: Experimental modal coupling efficiency η̃lm for phase plate 2 depending on the
transversal displacement of the incident beam; dimensions in µm.
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Reading off the relative energetic ratios of the modes ρ̃ 2
lm in the previously shown experimental

results at the maximum of the desired mode’s coupling efficiency, one obtains the results shown
in figure 21. For comparison the numerical results for an respectively adapted setup [see the
following paragraphs] are shown in figure 21 as well.

The numeric value of ρ̃ 2
01 for the phase plate 0 differs by 2.1% from the theoretical prediction;

for the latter a too large beam waist of σ0 = 13.0µm instead of 9.97µm was assumed.
Considering M2

eff = 1.21 for the used laser and a tilt of the incident beam against the fiber front
facet, the agreement of theory and experiment is very good.

For phase plate 1 the numeric value of ρ̃ 2
11 differs by 7.5% from the theoretical prediction;

here an off-centering of the phase plate of 1µm, a phase shift ∆Φ = 144° and a perfectly adapted
Gaussian beam waist radius of σ0 = 12.7µm were assumed. It should be noted that different
parameters can lead to the same results and therefore the reconstruction purely from the modal
energy ratios on all possible parameters is not unambiguously possible. The experimental
results for phase plate 1 though could be reconstructed numerically with the above mentioned
reasonable parameters.

Phase plate 2 shows a very strong resemblance of numerical and experimental results; the
maximal difference is 0.6% for LP21. For the simulation a slightly too small beam waist of
σ0 = 12.0µm [instead of 15.1µm], a phase shift of ∆Φ = 144° and an off-centering of the phase
plate of approximately 2µm were assumed.
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Figure 21: Diagram of the incoupled theoretical [left bars; best adjusted parameters] and
experimental [right bars] modal energy ratios ρ̃ 2

lm for phase plate 0 [upper left], 1
[lower left] or 2 [lower right] in a monolithic setup.
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The most important parameters, in order to optimize the setup, thus are the transversal
displacement of the phase plate relative to the fiber and the phase shift of the phase plate ∆Φ.
Regardless of these possible improvements, the primary excitation of higher order modes already
could be experimentally demonstrated.

5.2. Comparison with a Non-Monolithic Setup

One Phase plate in free space in front of a fiber input facet with at least some centimeters
between them, i.e. a non-monolithic setup, has been used several times [e.g. [6, 7, 9]]. Therefore
such setups are chosen as a reference to the monolithic setup. The measurements have been
performed with exactly the same setup, only the monolithic phase plate was exchanged with a
separate one. All the same numeric and experimental investigations have been made. Because
these measurements only serve as a comparison, the numerical and experimental results therefor
are shown in the appendix on pages i and ii.

It should be noted that for phase plate 0 the monolithic and the free space setup are
equivalent; at least theoretically.

The refractive index of the photoresist used for the manufacturing of the free space phase
plate was known, therefore ∆Φ was very near to 180°. The comparison of the experimental
results with simulations of optimal parameters [beam, phase plate and fiber concentric, phase
shift ∆Φ = 180°] can be seen in figure 22. Considering measurement errors from the camera,
a small tilt of the incoming beam and again the M2

eff = 1.21 of the laser, these differences of
measurement and simulation don’t seem too big.
The effects of a nearly optimal phase shift are visible. The purity of the respectively desired
mode might not be at the numerically predicted 100%, but is already quite high with 88.7% in
the worst case [for phase plate 1 ]. Thus, in comparison with the results for the monolithic
setup [see figure 21 on page 27], where ∆Φ = 144° was assumed, the importance of the correct
phase shift ∆Φ is apparent.

The dependence of the energy, which is coupled into the fiber, on the transversal displacement
of the fiber relative to the phase shifted beam numerically showed to be at least twice as sensitive
for the non-monolithic setup; the FWHM is for phase plate 1 8.2µm instead of 18.2µm and
for phase plate 2 8.8µm instead of 24.6µm wide.
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Figure 22: Diagramm of the incoupled theoretical [left bars; optimal setup assumed] and experi-
mental [right bars] ρ̃ 2

lm for 0 [upper left], 1 [lower left] and 2 [lower right] in a
non-monolithic setup.

In figure 23 the amount of the total incoupled relative to the incident power, as seen in
the experiments, is depicted. These values were recorded at optimized coupling positions.
Apparently the values for the monolithic setup are higher. One reason for this is that the phase
shift ∆Φ differed more from the optimal value of ∆Φ = 180° for the monolithic setup and thus
other modes could be excited, too; mainly LP01. Yet the measured differences between the free
space and the monolithic setups are bigger than explicable hereby and at least the experiments
for phase plates 0 and 2 in the monolithic setup [see figures 18 on page 25 and 20 on page 26]
showed, that the respective desired modes are very dominant. Therefore the main reason for
the lower coupling efficiency of the non-monolithic setup is assumed to be the relatively long
propagation distance between the free space phase plate and the fiber front facet, over which
the phase shaped beam changes its amplitude profile.

.
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Figure 23: Diagram of the experimentally determined coupling efficiencies Pincoupled
Pin

for the
monolithic setup [middle bars; ∆Φ = 144°] and the non-monolithic setup [right bars].
For comparison the numerically calculated expectations for the best adjusted case
are given as well [left bars].
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6. Conclusion and Outlook

For the selective excitation of higher order modes in few mode fibers [FMF] several different
approaches already have been proposed and investigated [e.g. [6, 8, 9, 28]]. These however need
a lot of room for the setup, are inefficient and/or can be quite expensive. To overcome these
limitations, the new approach for this investigation was to use a very compact setup of a passive
binary phase plate and a FMF [called “monolithic”].

In order to evaluate the theoretical capabilities of the investigated approach, numerical
simulations have been performed prior to the experiments. For ideally manufactured phaseplates
and optimal coupling conditions the numerical simulations showed an achievable mode purity
of 100% for all investigated phase plates. Only if the phase shift ∆Φ ≠ 180°, then the waist
size of the incident beam σ0 or the distance between the phase plate and the fiber ζ affected
the achievable mode purity. The coupling efficiency into the fiber for every phase shift ∆Φ got
worse though for bigger distances between phase plate and fiber ζ.

The experimental results showed a good agreement with the simulations. Yet mainly because
of the imperfect phase shift ∆Φ of the phase plates used, differences in the achieved mode purity
occured. The measured values for the modal energy ratios were ρ̃ 2

01 = 93.3% for the phase plate
adjusted to LP01, ρ̃ 2

11 = 80.2% for the phase plate adapted to LP11 and ρ̃ 2
21 = 73.3% for the

phase plate adjusted to LP21.

In comparison with a setup with a free space phase plate, which’s phase shift was much
closer to the optimal value of ∆Φ = 180°, it already could be shown experimentally that the
coupling efficiency of the monolithic setup is higher: For the phase plate adapted to LP11 the
coupling efficiency for the monolithic setup was much higher than for the free space setup with
approximately 40% in comparison to 25%. For the phase plate adapted to LP21 the respective
values were even more diverse with 30% in coparison to 15%.

These results show that the monolithic setup used in this study is a promising approach for
an efficient excitation of one higher order mode, while requiring minimal room. Based on these
properties and because the guidance of higher order modes in a fiber is much stronger affected
by external perturbations [e.g. temperature, pressure or stress] compared to lower order modes,
it seems reasonable to use this setup for a sensor. The measurement, knowing what mode is
guided by the fiber, can then be simplified to the measurement of the power emitted from the fiber.

However the dependence of a lot of parameters has been examined in this study [namely the
beam waist radius of the incident beam, the displacement of the incident beam transversal to
the incoupling plane, the phase shift of the phase plate and the free space distance between the
phase plate and fiber], for a further understanding of the setup more parameters remain. The
most important are the displacement of the phase plate relative to the concentric position with
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the fiber and a tilt of the incident beam realtive to the fiber input facet.

For an even more sophisticated understanding investigations resolved in the polarization and
the orientation of the modes can be undertaken. In the conducted experiments, where the
disturbances were kept to a minimum, these distinctions have already been recorded. In order to
understand the effects of disturbances [like modal birefringence [9] or the influence of bends in
and pressure on the fiber [as investigated in [4, 5]]] further experiments and numeric simulations
need to be made. These are necessary if one wants to use this setup for a sensor.

However before these properties are going to be experimentally investigated in the future, the
phase shift of the phase plates should be optimized and the phase plate fixated much firmer
relative to the fiber.

Allthough the approach of a monolithic phase plate and fiber setup has mainly been investi-
gated for the use in a fiber sensor, it shall be noted, that the same principle of selective higher
mode excitation also can be used in other applications; e.g. in fiber lasers or in communication
fibers.
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A. Additional Graphs
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Figure 24: Numerically calculated coupling efficiencies ηlm for phase plate 0 , which theoretically
is the same as using no phase plate at all, in the free space setup with ∆Φ = 180° and
a beam with σ0 = 9.96µm dependent on the displacement of the fiber; dimensions in
µm.
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Figure 25: Experimentally determined coupling efficiencies normalized to the total incoupled
power η̃lm without any phase plate and an optimally adjusted setup dependent on
the displacement of the fiber; dimensions in µm.
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Figure 26: Numerically calculated coupling efficiencies ηlm for phase plate 1 in the free space
setup with ∆Φ = 180° and a beam with σ0 = 9.97µm dependent on the displacement
of the fiber; dimensions in µm.
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Figure 27: Experimentally determined coupling efficiencies normalized to the total incoupled
power η̃lm for phase plate 1 in the free space setup with ∆Φ = 180° and an optimally
adjusted setup dependent on the displacement of the fiber; dimensions in µm.
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Figure 28: Numerically calculated coupling efficiencies ηlm for phase plate 2 in the free space
setup with ∆Φ = 180° and a beam with σ0 = 9.97µm dependent on the displacement
of the fiber; dimensions in µm.

LP01

-20 0 20

-20

0

20

LP02

-20 0 20

-20

0

20

LP11

-20 0 20

-20

0

20

LP21

 

 

-20 0 20

-20

0

20
0
0.2
0.4
0.6
0.8

Figure 29: Experimentally determined coupling efficiencies normalized to the total incoupled
power η̃lm for a phase plate 2 in the free space setup with ∆Φ = 180° and an
optimally adjusted setup dependent on the displacement of the fiber; dimensions in
µm.
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