Untersuchungen zu modalen Anregungen in Few Mode Fasern

Johannes Wilde

03.12.2014

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
●000	00 00	00 00000 0000	0	

- Fasersensoren sind:
 - \sim leicht,
 - $\sim~{\rm klein},$
 - \sim minimalinvasiv,
 - $\sim\,$ stabil gegen elektromagnetische Interferenzen

[Lee et al., Optical Fiber Technology 9, 57 (2003)]

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
●000	00 00	00 00000 0000	0	

- Fasersensoren sind:
 - \sim leicht,
 - \sim klein,
 - \sim minimalinvasiv,
 - $\sim\,$ stabil gegen elektromagnetische Interferenzen

[Lee et al., Optical Fiber Technology 9, 57 (2003)]

- prominentes Beispiel: Faser-Bragg-Sensoren
 - $\sim~{\rm Bragg}\text{-}{\rm Gitter}$ eingeschrieben
 - \sim reflectiert $\lambda_B = 2 n_{\rm eff} \Lambda$

[ebda.]

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
●000	00	00 00000 0000	0	

- Fasersensoren sind:
 - \sim leicht,
 - \sim klein,
 - \sim minimalinvasiv,

[ebda.]

 $\sim\,$ stabil gegen elektromagnetische Interferenzen

[Lee et al., Optical Fiber Technology 9, 57 (2003)]

- prominentes Beispiel: Faser-Bragg-Sensoren
 - $\sim~{\rm Bragg}\text{-}{\rm Gitter}$ eingeschrieben
 - \sim reflektiert $\lambda_B = 2 n_{\rm eff} \Lambda$
 - $\sim~\Lambda$ wesentlich druck- / temperaturabhängig
 - $\sim~$ nur lokal sensitiv
 - $\sim~{\rm Transmissions spektrenaus wertung}$ nötig

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
●000	00 00	00 00000 0000	0	

- Fasersensoren sind:
 - \sim leicht,
 - \sim klein,
 - \sim minimalinvasiv,

[ebda.]

 $\sim\,$ stabil gegen elektromagnetische Interferenzen

[Lee et al., Optical Fiber Technology 9, 57 (2003)]

- prominentes Beispiel: Faser-Bragg-Sensoren
 - $\sim~{\rm Bragg}\text{-}{\rm Gitter}$ eingeschrieben
 - \sim reflektiert $\lambda_B = 2 n_{\rm eff} \Lambda$
 - $\sim~\Lambda$ wesentlich druck- / temperaturabhängig
 - $\sim~$ nur lokal sensitiv
 - $\sim~{\rm Transmissions spektrenaus wertung}$ nötig
- Einfacheres System gewünscht.

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 00000 0000	0	

- Führung von Fasermoden extern beeinflusst.
- Höhere Moden stärker beeinflusst.

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00	00 00000 0000	0	

- Führung von Fasermoden extern beeinflusst.
- Höhere Moden stärker beeinflusst.
- → 1 höhere Mode und Intensitätsmessung
 - $\Rightarrow \operatorname{Sensor}$

[Schulze, Dissertation, FSU Jena (2014)]

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 00000 0000	0	

- Führung von Fasermoden extern beeinflusst.
- Höhere Moden stärker beeinflusst.
- → 1 höhere Mode und Intensitätsmessung

 \Rightarrow Sensor

 $[{\it Schulze},\,{\it Dissertation},\,{\it FSU}$ Jena(2014)]

- Passive Phasenplatten zur modal selektiven Anregung [Igarashi et al., Optics Express 22, 20881 (2014)]

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 00000 0000	0	

of applied optics

- Bis jetzt: Phasenplatte im kollimierten Strahl

LS - Laser Quelle, MO_1 - Mikroskopobjektiv, PP - Phasenplatte, HP - Hexapod, FMF - Few Mode Faser.

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 00000 0000	0	

of applied optics

- Bis jetzt: Phasenplatte im kollimierten Strahl

- Zur Vermeidung von Propagationseffekten neuer Ansatz: monolithischer Aufbau

LS - Laser Quelle, MO₁ - Mikroskopobjektiv, PP - Phasenplatte, HP - Hexapod, FMF - Few Mode Faser.

Überblick

Motivation

Grundlagen

Fasermoden Modale Anregung

Experimente

Experimenteller Aufbau Rein Numerische Ergebnisse Strahlradius Freiraumpropagationsdistanz Ergebnisse Transversale Dejustage

Vergleich mit Freiraumphasenplatten

Zusammenfassung und Ausblick

Grundlagen

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	• o ••	00 00000 0000	0	

- Radialsymmetrische Stufenindexfaser.
- Schwach führend.

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	• o oo	00 00000 0000	0	

- Radialsymmetrische Stufenindexfaser.
- Schwach führend.
- $\Rightarrow LP_{lm}$ -Moden .

- Radialsymmetrische Stufenindexfaser.
- Schwach führend.
- $\rightarrow LP_{lm}$ -Moden .

Faser

– Jedes geführte Feld $\vec{E}_{\rm ein}$ als Linearkombination beschreibbar

$$\vec{E}_{\rm ein} = \sum_{l,m,o,p} \rho_{lmop} \, LP^o_{lm} \, \vec{e}_p \; , \label{eq:ein}$$

o Orientierung der jeweiligen Mode, \vec{e}_p Polarisationseinheitsvektor.

- Radialsymmetrische Stufenindexfaser.
- Schwach führend.
- $\rightarrow LP_{lm}$ -Moden .

Faser

– Jedes geführte Feld $\vec{E}_{\rm ein}$ als Linearkombination beschreibbar

$$\vec{E}_{\rm ein} = \sum_{l,m,o,p} \rho_{lmop} \, LP^o_{lm} \, \vec{e}_p \; , \label{eq:ein}$$

oOrientierung der jeweiligen Mode, \vec{e}_p Polarisationseinheitsvektor.

- Aufgrund Symmetrie des Problems und der Willkürlichkeit von *o* numerisch nur Folgendes betrachtet:

$$\rho_{lm}^2 = \sum_{o,p} \rho_{lmop}^2 \; .$$

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000		00 00000 0000	0	

- Typische Amplituden- und Phasenprofile einer Few Mode Faser

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000		00 00000 0000	0	

- Typische Amplituden- und Phasenprofile einer Few Mode Faser

- Phasen profile verschiedener l orthogonal!

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000		00 00000 0000	0	

- Typische Amplituden- und Phasenprofile einer Few Mode Faser

- Phasen profile verschiedener l orthogonal!

 \rightarrow selektierbar

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	○○ ●○	00 00000 0000	0	

Modale Anregung

- transversaler Phasenhub [Seitenansicht]

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 00000 0000	0	

Modale Anregung

- transversaler Phasenhub [Seitenansicht]

- Phasendifferenz

$$\Delta \Phi = \frac{2\pi}{\lambda} [n_{ph} - n]d$$

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 00000 0000	0	

- Untersuchte Phasenprofile [Frontalansicht]

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 00000 0000	0	

- Untersuchte Phasenprofile [Frontalansicht]

- Die normierte, dem jeweiligen Phasenprofil angepasste Intensität mittels \fbox{l} ergibt sich zu

$$\tilde{\rho}_l^2 = \frac{1}{2} [1 - \cos(\Delta \Phi)]$$
, $\tilde{\rho}_0^2 = \frac{1}{2} [1 + \cos(\Delta \Phi)]$.

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 00000 0000	0	

Experimente

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	• 0 00000 0000	0	

Experimenteller Aufbau

of applied optics

- Prinzipskizze des experimentellen Setups:

LS - Laser Quelle, $\rm MO_{1,2}$ - Mikroskopobjektive, $\rm PP$ - Phasenplatte, HP - Hexapod, FMF - Few Mode Faser,

- Verwendete Faser: Nufern LMA-GDF-25/250-M mit 1064 nm.

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	• 0 00000 0000	0	

Experimenteller Aufbau

- Prinzipskizze des experimentellen Setups:

- Modale Zerlegung des austretenden Lichtes mittels der Korrelationsfiltermethode [CFM].

[Kaiser, Diplomarbeit, FSU Jena, 2008]

LS - Laser Quelle, $MO_{1,2}$ - Mikroskopobjektive, PP - Phasenplatte, HP - Hexapod, FMF - Few Mode Faser, HWP - $\frac{3\lambda}{2}$ -Platte, P - Linearpolarisator, L_{1,2} - Linsen, BS - Strahlteiler, $CCD_{1,2}$ - Kameras, CF - Korrelationsfilter.

- Verwendete Faser: Nufern LMA-GDF-25/250-M mit 1064 nm.

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00	○● ○○○○○ ○○○○○	0	

Phasenplatte

- Von Dr. Siegmund Schröter [IPHT Jena].

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 00000 0000	0	

Vorbemerkungen

- Messungen und Rechnungen aufgelöst in Orientierung der Moden $[\varphi_0]$ ausgeführt.
- Transversale, lineare Polarisation der Moden in Experiment gemessen.

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 •0000 0000	0	

Vorbemerkungen

- Messungen und Rechnungen aufgelöst in Orientierung der Moden $[\varphi_0]$ ausgeführt.
- Transversale, lineare Polarisation der Moden in Experiment gemessen.
- Für Fasersensor mit Intensitätsmessung nicht relevant.
- In realen Faser störende Effekte [z.B. modale Doppelbrechung]. [Kogelnik et al., Journ of Lightw. Tech. 30, 2240 (2012)]

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 00000 0000	0	

Vorbemerkungen

- Messungen und Rechnungen aufgelöst in Orientierung der Moden $[\varphi_0]$ ausgeführt.
- Transversale, lineare Polarisation der Moden in Experiment gemessen.
- Für Fasersensor mit Intensitätsmessung nicht relevant.
- In realen Faser störende Effekte [z.B. modale Doppelbrechung]. [Kogelnik et al., Journ of Lightw. Tech. 30, 2240 (2012)]
- Ergebnisse ohne Berücksichtigung dieser Parameter dargestellt.

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 0000 0000	0	

- Modale Kopplungseffizienz über dem Strahlradius für $\boxed{1}$ mit

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00	00 00000 0000	0	

– Für alle untersuchten Phasenplatten Reinheit der gewünschten Mode von $100\,\%$ möglich.

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00	00 00000 0000	0	

- Für alle untersuchten Phasenplatten Reinheit der gewünschten Mode von $100\,\%$ möglich.
- Maximale Kopplungseffizienz für höhere \fbox{l} niedriger:

$$\begin{array}{c|ccc} 0 & 99,3\% \\ \hline 1 & 72,9\% \\ \hline 2 & 67,2\% \end{array}$$

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 00000 0000	0	

- Für alle untersuchten Phasenplatten Reinheit der gewünschten Mode von $100\,\%$ möglich.
- Maximale Kopplungseffizienz für höhere \fbox{l} niedriger:

$$\begin{array}{c|ccc} 0 & 99,3\% \\ \hline 1 & 72,9\% \\ \hline 2 & 67,2\% \end{array}$$

– Optimaler Strahlradius für höher
e \fbox{l} größer:
Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 000●0 0000	0	

$\label{eq:Freiraumpropagations distanz$

- Abstand zwischen Phasenplatte und Fasereingang $\zeta.$

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 000●0 0000	0	

$\label{eq:Freiraumpropagations distanz$

- Abstand zwischen Phasenplatte und Fasereingang $\zeta.$
- Optimaler Strahlradius σ_0 und Koppeleffizienzen für 1 mit $\Delta \Phi = 180^{\circ}$ [gesamt eingekoppelt, Modenreinheit von LP_{11}]:

institute billing institute institut

- 14/21 -

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00	00 0000● 0000	0	

$\label{eq:Freiraumpropagations distanz$

- 2 ähnlich; jedoch Einbruch der Koppeleffizienz stärker.

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 0000 0000	0	

Freir a umpropagations distanz

- 2 ähnlich; jedoch Einbruch der Koppeleffizienz stärker.
- Mit $\Delta\Phi=180^\circ$ 100 % Modenreinheit für all
e ζ möglich; Koppeleffizienz potentiell klein.
- In Experiment $\zeta < 50\,\mu{\rm m},$ so
dass Einfluss vernachlässigbar.
- Nicht vergleichbar mit Freiraumexperimenten!

Transversale Dejustage des Eingangsstrahls

- Modale Kopplungseffizienzen für $\boxed{0}$ abhängig von der Verschiebung von E_0 [numerisch und experimentell]

Transversale Dejustage des Eingangsstrahls

- Modale Kopplungseffizienzen für $\boxed{0}$ abhängig von der Verschiebung von E_0 [numerisch und experimentell]

Keine Modenfelder, sondern modal eingekoppelte Intensität über Verschiebung des Eingangsstrahls!

Transversale Dejustage des Eingangsstrahls

- Modale Kopplungseffizienzen für $\boxed{0}$ abhängig von der Verschiebung von E_0 [numerisch und experimentell]

Transversale Dejustage des Eingangsstrahls

- Modale Kopplungseffizienzen für $\boxed{1}$ abhängig von der Verschiebung von E_0 [numerisch und experimentell]

Transversale Dejustage des Eingangsstrahls

- Modale Kopplungseffizienzen für $\boxed{1}$ abhängig von der Verschiebung von E_0 [numerisch und experimentell]

 Motivation
 Grundlagen
 Experimente
 Vergleich
 Zusammenfassung

 0000
 00
 00
 0

 000
 00
 00
 0

 000
 00
 00
 0

Transversale Dejustage des Eingangsstrahls

- Modale Kopplungseffizienzen für 2 abhängig von der Verschiebung von E_0 [numerisch und experimentell]

Transversale Dejustage des Eingangsstrahls

- Modale Kopplungseffizienzen für 2 abhängig von der Verschiebung von E_0 [numerisch und experimentell]

Transversale Dejustage des Eingangsstrahls

- Experimentell beste modale Reinheiten und numerische Rekonstruktionen für 0, 1 und 2:

Vergleich mit Freiraumphasenplatten

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00	00 00000 0000	•	

Vergleich mit Freiraumphasenplatten

- Mindestens doppelt so sensitiv auf die Verschiebung des Eingangsstrahls.
- Einkoppeleffizienz: _

Zusammenfassung und Ausblick

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 00000 0000	0	

- Selektive Anregung höherer Moden experimentell gezeigt.

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 00000 0000	0	

- Selektive Anregung höherer Moden experimentell gezeigt.
- Experimentell gute Übereinstimmungen mit Simulationen.

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 00000 0000	0	

- Selektive Anregung höherer Moden experimentell gezeigt.
- Experimentell gute Übereinstimmungen mit Simulationen.
- Effizienz höher als mit Freiraumphasenplatten.

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 00000 0000	0	

- Selektive Anregung höherer Moden experimentell gezeigt.
- Experimentell gute Übereinstimmungen mit Simulationen.
- Effizienz höher als mit Freiraumphasenplatten.

Ausblick

- Phasenhub
 $\Delta\Phi$ optimieren.

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 00000 0000	0	

- Selektive Anregung höherer Moden experimentell gezeigt.
- Experimentell gute Übereinstimmungen mit Simulationen.
- Effizienz höher als mit Freiraumphasenplatten.

Ausblick

- Phasenhub
 $\Delta\Phi$ optimieren.
- Phasenplatte fixieren.

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 00000 0000	0	

- Selektive Anregung höherer Moden experimentell gezeigt.
- Experimentell gute Übereinstimmungen mit Simulationen.
- Effizienz höher als mit Freiraumphasenplatten.

Ausblick

- Phasenhub
 $\Delta\Phi$ optimieren.
- Phasenplatte fixieren.
- Zusätzliche Parameter untersuchen.
 - $[z.B.: Phasenplattenverschiebung, Eingangsstrahlsverkippung, \dots]$

Motivation	Grundlagen	Experimente	Vergleich	Zusammenfassung
0000	00 00	00 00000 0000	0	

- Selektive Anregung höherer Moden experimentell gezeigt.
- Experimentell gute Übereinstimmungen mit Simulationen.
- Effizienz höher als mit Freiraumphasenplatten.

Ausblick

- Phasenhub
 $\Delta\Phi$ optimieren.
- Phasenplatte fixieren.
- Zusätzliche Parameter untersuchen.
 - $[z.B.: Phasenplattenverschiebung, Eingangsstrahlsverkippung, \dots]$
- Für Sensor außerdem Einflüsse von der Messgröße.

Vielen Dank für die Aufmerksamkeit.

Anhang

Monolithischer Aufbau

Eigenschaften des monolithischen Aufbaus

Im Vergleich mit Freiraumphasenplatten, SLM, \ldots

- + Effizienter.
- + Einmal justiert, konstant.
- + Minimaler Platzbedarf.
- Einmal justiert, nicht mehr veränderbar.
- Faser und Phasenplatte nur als Verbund austauschbar.

${\bf Freir a umphasen platten}$

Freiraumphasenplattenmessungen - \bigcirc

Freiraumphasenplattenmessungen - 1

Freiraumphasenplattenmessungen - 2

Phasenhub

Phasenhub

Korrelationsfilter

Korrelationsfiltermethode

- Transmissionsfunktion [Kaiser, Diplomarbeit, FSU Jena, 2008]

$$\begin{split} T(\vec{\xi}) &= \sum_{l,m,p} E_{lm}^{p\,*} \,\mathrm{e}^{\mathrm{i}\,\vec{\nu}_{lm}^{p}\vec{\xi}} + \sum_{\substack{l,m,p \\ (l,m,p) \neq (f,g,h)}} \frac{1}{\sqrt{2}} \left[E_{fg}^{h\,*} + E_{lm}^{p\,*} \right] \mathrm{e}^{\mathrm{i}\,\vec{\nu}_{lm}^{\prime\,p}\vec{\xi}} \\ &+ \sum_{\substack{l,m,p \\ (l,m,p) \neq (f,g,h)}} \frac{1}{\sqrt{2}} \left[E_{fg}^{h\,*} + \mathrm{i}\,E_{lm}^{p\,*} \right] \mathrm{e}^{\mathrm{i}\,\vec{\nu}_{lm}^{\prime\prime\,p}\vec{\xi}} \,, \end{split}$$

- Korrelationsfilter als Amplitudenhologramm.

[Rockstuhl, Diplomarbeit, FSU Jena, 2001]

${\it Korrelations filter methode}$

- Man erhält folgende Intensitäten:

$$\begin{split} \vec{\nu}_{lm}^{p} &: I_{lm}^{p} = \overline{\left| c_{fg}^{h} \right|^{2}} = \rho_{lm}^{p \ 2} ,\\ \vec{\nu}_{lm}^{\prime p} &: I_{lm}^{\prime p} = \frac{1}{2} \overline{\left| c_{fg}^{h} + c_{lm}^{p} \right|^{2}} = \frac{1}{2} \left[\rho_{fg}^{h^{2}} + \rho_{lm}^{p \ 2} + 2 \rho_{fg}^{h} \rho_{lm}^{p} \overline{\cos(\phi_{fg}^{h} - \phi_{lm}^{p})} \right] ,\\ \vec{\nu}_{lm}^{\prime \prime p} &: I_{lm}^{\prime \prime p} = \frac{1}{2} \overline{\left| c_{fg}^{h} + i c_{lm}^{p} \right|^{2}} = \frac{1}{2} \left[\rho_{fg}^{h^{2}} + \rho_{lm}^{p \ 2} + 2 \rho_{fg}^{h} \rho_{lm}^{p} \overline{\sin(\phi_{fg}^{h} - \phi_{lm}^{p})} \right] . \end{split}$$

- Für kohärentes Licht ist somit auch die Phasen bestimmbar.

Literatur
Literatur I

- [1] FLAMM, DANIEL, CHRISTIAN SCHULZE, DARRYL NAIDOO, SIEGMUND SCHRÖTER, ANDREW FORBES und MICHAEL DUPARRÉ: All-digital holographic tool for mode excitation and analysis in optical fibers. Journal of Lightwave Technology, 31(7):1023–1032, 2013.
- [2] HOYNINGEN-HUENE, JOHANNES VON, ROLAND RYF, PETER WINZER et al.: LCoS-based mode shaper for few-mode fiber. Optics express, 21(15):18097–18110, 2013.
- [3] IGARASHI, KOJI, DAIKI SOUMA, TAKEHIRO TSURITANI und ITSURO MORITA: Performance evaluation of selective mode conversion based on phase plates for a 10-mode fiber. Optics express, 22(17):20881–20893, 2014.

Literatur II

of applied optics

- [4] KAISER, THOMAS: Field Reconstruction In Optical Fibers By Complete Modal Decomposition Using Computer-Generated Holograms. Diploma Thesis, Friedrich-Schiller-Universität Jena, 2008.
- [5] KOGELNIK, H und PJ WINZER: Modal birefringence in weakly guiding fibers. Journal of Lightwave Technology, 30(14):2240-2245, 2012.
- [6] LEE, BYOUNGHO: Review of the present status of optical fiber sensors. Optical Fiber Technology, 9(2):57 - 79, 2003.
- [7] ROCKSTUHL, CARSTEN: Theoretische und experimentelle Untersuchungen zur Laserstrahlanalyse mit diffraktiven Korrelationsfiltern. Diploma Thesis, FSU Jena, 2001.

[8] SCHULZE, CHRISTIAN: Laser beam characterization with lographic tools. Diploma Thesis, FSU Jena, 2014.